A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery

نویسندگان

  • Charles Walthall
  • Wayne Dulaney
  • Martha Anderson
  • John Norman
  • Hongliang Fang
  • Shunlin Liang
چکیده

Plant foliage density expressed as leaf area index (LAI) is used in many ecological, meteorological, and agronomic models, and as a means of quantifying crop spatial variability for precision farming. LAI retrieval using spectral vegetation indices (SVI) from optical remotely sensed data usually requires site-specific calibration values from the surface or the use of within-scene image information without surface calibrations to invert radiative transfer models. An evaluation of LAI retrieval methods was conducted using (1) empirical methods employing the normalized difference vegetation index (NDVI) and a new SVI that uses green wavelength reflectance, (2) a scaled NDVI approach that uses no calibration measurements, and (3) a hybrid approach that uses a neural network (NN) and a radiative transfer model without site-specific calibration measurements. While research has shown that under a variety of conditions NDVI is not optimal for LAI retrieval, its continued use for remote sensing applications and in analysis seeking to develop improved parameter retrieval algorithms based on NDVI suggests its value as a ‘‘benchmark’’ or standard against which other methods can be compared. Landsat-7 ETM+ data for July 1 and July 8 from the Soil Moisture EXperiment 2002 (SMEX02) field campaign in the Walnut Creek watershed south of Ames, IA, were used for the analysis. Sun photometer data collected from a site within the watershed were used to atmospherically correct the imagery to surface reflectance. LAI validation measurements of corn and soybeans were collected close to the dates of the Landsat-7 overpasses. Comparable results were obtained with the empirical SVI methods and the scaled SVI method within each date. The hybrid method, although promising, did not account for as much of the variability as the SVI methods. Higher atmospheric optical depths for July 8 leading to surface reflectance errors are believed to have resulted in overall poorer performance for this date. Use of SVIs employing green wavelengths, improved method for the definition of image minimum and maximum clusters used by the scaled NDVI method, and further development of a soil reflectance index used by the hybrid NN approach are warranted. More importantly, the results demonstrate that reasonable LAI estimates are possible using optical remote sensing methods without in situ, site-specific calibration measurements. D 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Effectiveness of Landsat ETM+ Satellite Images Classification Methods in Identification of desert pavements (Case study: South of Semnan)

Extended abstract 1- Introduction The process of identifying landforms is a subject that has been researched by many researchers. All the definitions of geomorphology emphasize the study and identification of landforms. Understanding landforms and how they are distributed are some sort of essential requirements in applied geomorphology and other environmental sciences (Shayan et al., 2012). O...

متن کامل

Empirical modeling potential transfer of land cover change pa city with neural network algorithms

Land-use change is one of the most important challenges of land-use planning that lies with planners, decision-makers and policymakers and has a direct impact on many issues, such as economic growth and the quality of the environment. The present study examines the land use change trends in Behbahan city for 2014 and 2028 using LCM in the GIS environment. Analysis and visibility of user variati...

متن کامل

Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venμs sensors

Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venμs sensors Anthony L. Nguy-Robertson & Anatoly A. Gitelson a Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska, USA b Faculty of Civil and Environmental Engineering, Israel Insti...

متن کامل

Hyperspectral versus multispectral data for estimating leaf area index in four different biomes

Motivated by the increasing importance of hyperspectral remote sensing data, this study sought to determine whether current-generation narrow-band hyperspectral remote sensing data could better track vegetation leaf area index (LAI) than traditional broad-band multispectral data. The study takes advantage of a unique dataset, wherein field measurements of LAI were acquired at the same general t...

متن کامل

Estimation and validation of land surface broadband albedos and leaf area index from EO-1 ALI data

The Advanced Land Imager (ALI) is a multispectral sensor onboard the National Aeronautics and Space Administration Earth Observing 1 (EO-1) satellite. It has similar spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo and leaf area index (LAI) from ALI data. A re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004